欢迎光临上海民恩电气有限公司!
产品中心
PRODCTS
专业从事EMI/EMC电源滤波器的研发
电源滤波器基础知识
发布时间:2023-04-11 16:14 浏览次数:247

1.滤波器的功能

   滤波器的功能就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;理想滤波器在通带内的电压增益为常数,在阻带内的电压增益为零;实际滤波器的通带和阻带之间存在一定频率范围的过渡带。


2.滤波器的分类

(1)按所处理的信号分为模拟滤波器和数字滤波器两种。

(2)按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。  

         低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。   

         高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。

         带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

         带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

(3)按所采用的元器件分为无源和有源滤波器两种。

        无源滤波器:仅由无源元件(L.C.R)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

        有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。


3. 滤波器的主要参数

(1)通带增益A0:滤波器通带内的电压放大倍数。

(2)特征角频率和特征频率fn:它只与滤波用的电阻和电容元件的参数有关,通常对于带通(带阻)滤波器,称为带通(带阻)滤波器的中心角频率或中心频率f0,是通带(阻带)内电压增益最大(最小)点的频率。

(3)截止角频率和截止频率f0:它是电压增益下降到 (即)时所对应的角频率。必须注意 不一定等于。带通和带阻滤波器有两个,即和。

(4)通带(阻带)宽度BW:它是带通(带阻)滤波器的两个之差值,即。

(5)等效品质因数Q:对低通和高通滤波器而言,Q值等于 时滤波器电路电压增益的模与通带增益之比,即;对带通(带阻)滤波器而言,Q值等于中心角频率与通带(阻带)宽度BW之比,即。


4. 有源滤波器的阶数

    有源滤波器传递函数分母中“S”的最高“方次”称为滤波器的“阶数”。阶数越高,滤波器幅频特性的过渡带越陡,越接近理想特性。一般情况下,一阶滤波器过渡带按每十倍频20dB速率衰减;二阶滤波器每十倍频40dB速率衰减。高阶滤波器可由低阶滤波器串接组成。


5. 低通和高通滤波器之间的对偶关系

(1)幅频特性的对偶关系

当低通滤波器和高通滤波器的通带增益 A0、截止频率或 f0分别相等时,两者的幅频特性曲线相对于垂直线f=f0对称。

(2)传递函数的对偶关系

将低通滤波器传递函数中的S换成1/S,则变成对应的高通滤波器的传递函数

(3)电路结构上的对偶关系

将低通滤波器中的起滤波作用的电容C换成电阻R,并将起滤波作用的电阻R换成电容C,则低通滤波器转化为对应的高通滤波器。


    滤波器对PWM变频调速电动机端子上电压波形的影响

    随着微电子技术和现代控制理论在交流变频调速系统中的应用,变频器(或逆变器)的性能也得到飞跃性的提高,并越来越广泛地应用于工业生产和日常工作的许多领域之中。但是,变频器输出的具有陡上升沿或下降沿的脉冲电压却在电动机接线端子及绕组上产生了过电压,造成电动机绕组绝缘的过早破坏。试验研究表明,很高的电压上升率(dv/dt)在电动机绕组上产生极不均匀的电压分布,且随着变频器与电动机之间电缆(线)长度的增加,在电动机接线端子上产生高频振荡的过电压,当电缆长度超过某一临界值后,电动机端子上过电压的幅值达到变频器输出电压的2倍,长时间重复性的电压应力的作用将导致电动机绕组匝间绝缘的过早破坏。

    为了降低电动机端子上高频振荡的过电压,最适宜的方法之一是在电动机端子上安装特殊设计的滤波器。滤波器的参数与变频器特性及电缆参数有关,然而变频器、电缆及电机一般都不是同一制造商或销售商提供,变频器的开关特性、电缆参数及长度的不确定性,使得滤波器的参数选择具有不固定性。关于滤波器的参数与电机端电压或电流特性的关系,目前还未有系统研究的报道。本文主要研究在不同电缆长度下,滤波器的参数对电机端电压特性的影响,确定电缆长度、滤波器的电阻和电容与电机端子过电压幅值及脉冲上升沿时间的关系,找出滤波器参数的选择范围,为变频调速驱动系统的制造和使用提供试验依据和理论基础。




1、试验研究及分析

    PWM变频调速驱动系统中,造成电机端子产生高频振荡过电压的原因,用传输线理论可以很好地解释,并且通过试验研究也进一步得到证实,它是造成电机绝缘过早破坏的原因之一,因此为了延长电机寿命,除了提高电机自身的绝缘水平外,还必须尽最大可能抑制过电压的浪涌冲击。

(1)滤波器与驱动系统的等值电路

    在电动机端子上安装阻抗匹配器可以很大程度地消弱过电压,最简单的是并联一个与电缆的波阻抗接近的电阻,但由于电缆(线)的波阻抗很小,一般为10Ω~500Ω,故并联电阻上的功耗很大,达到数百至数千瓦,因此一般不采用纯电阻匹配器,通常都采用一阶RC低通滤波器。

    无源低通一阶阻尼滤波器是电阻和电容串联后并接在电机接线端子相—相上,根据传输线一次波过程的彼得逊(Petersen)规则,滤波器与变频器、电缆和电机组成了如图1所示的等值电路,其中2US为等值电源电压,US即为变频器输出电压,Z0为等值电缆波阻抗,Zm为电机绕组波阻抗,Rf为滤波器电阻,Cf为滤波器电容。

        图1一次波过程的等值电路图2电动机端子上电压上升沿波形与滤波器电容Cf和电阻Rf的关系

        (a)Cf=0.08μF(b)Cf=0.02μF

        (c)Cf=0.005μF(d)Cf=0.001μF

    以前研究中已经证实,在通用PWM驱动变频器的载波频率(600Hz~15kHz)下,平均脉冲宽度在数十微秒以上,而由波过程产生的高频振荡过程一般约需十几微秒,因此在分析PWM变频器输出的连续脉冲波的波过程时,可用一个阶跃波的波过程来表示。

    电缆的波阻抗Zc可通过测量单位长度的电容C0和电感L0来求得。本文采用低压三相PVC绝缘护套电缆线,测得相—相间C0约为7?6×10-11F/m,L0约为6?5×10-7H/m,从而根据Zc=(L0/C0)1/2求得Zc约为92Ω。这里考虑电源有很小的内阻抗,因此对图1中的等值电缆波阻抗Z0可近似取为100Ω。电动机由于是电感性负载,其波阻抗Zm远大于电缆的波阻抗。

(2)滤波器的参数对端子上电压波形的影响

    对于陡上升沿的电压波来说,滤波器的电容Cf可认为是零波阻抗,相当于短路,如果取滤波器电阻Rf的阻值与电缆的波阻抗相等,而电动机的波阻抗又远大于Rf,则负载阻抗近似为Rf,这样一来,电缆末端的负载阻抗与电缆的波阻抗相匹配,在电动机端子上就不会产生电压波的全反射,也就不会形成过电压。

    然而滤波器的电容该如何确定?原理上其电容值越大,对阻抗的匹配性就越好,过电压就越小。但是,随着电容值的增大,电阻上的功耗就增加,因为在连续矩形脉冲电压下,滤波器电阻的总功耗P可近似表示为P=3CfUo2fs(1)式中fs为变频器的载波频率,对于普通型变频器约为600Hz~5kHz,低噪音型变频器约为8kHz~15kHz,而对于特殊的变频器可达到20kHz。如取Uo为400V,Cf取为0?1μF,fs分别取为1kHz和10kHz,则根据式1求得电阻上的总功耗分别为48W和480W,随着电阻功耗的增大,滤波器元件的尺寸也相应增大,因此在小型变频调速电动机应用中,就不能不考虑功耗这一因素。

    实际应用中,如果对滤波器不能进行专门设计,就不能达到满意的匹配效果,这就是说滤波器的失匹配程度将影响对电动机端子上过电压的抑制效果,本文在不同的电缆长度(30m、45m和75m)下,电阻Rf分别取75Ω、100Ω、150Ω和350Ω,及电容Cf取为0?001μF~0?16μF,分别测量了电动机端子上电压的波形、上升沿过电压幅值,以及上升时间的变化。

图2所示的是电动机端子上相—相电压上升沿的波形与滤波器电阻的关系,其中电缆长度为45m,滤波器电容分别为0?08μF、0?02μF、0?005μF和0?001μF。

    从图2中可以看出,当滤波器电阻近似等于或小于100Ω时,滤波器的电容对高频振荡的幅度及波形有显著的影响,随着滤波器电容的减小,高频振荡的幅值增大,滤波效果变差。而当滤波器电阻远大于100Ω时,滤波器的电容对振荡的幅值及波形的影响很小。

    图4电动机端子上电压上升沿时间与滤波器电阻及电容的关系

    图3电动机端子上过电压倍率(Ump/Ums)与滤波器电阻Rf及电容Cf的关系

    为了更进一步地研究滤波器的电阻和电容与电动机端子上电压特性的关系,下面将分别测量不同滤波器的电阻和电容下,电动机端子上电压上升沿过电压倍率及电压上升时间。

(3)滤波器的参数与端子上过电压的关系

    按照上述方法,在电缆长度分别为30m和75m时,在不同的滤波器电阻及电容下,测取电动机端子上电压上升沿的波形,从而得到电动机端子上电压上升沿过电压倍率与滤波器电阻及电容的关系曲线,如图3所示,其中过电压倍率为上升沿的电压峰值Ump与稳态值Ums(即近似等于变频器输出电压幅值)之比。

    从图3中可以清楚地看出:滤波器的电容值Cf越大,滤波器的电阻值Rf越小,则过电压的倍率就越小;另外,电缆长度L越长,过电压倍率也相应略增大。这样看来,当电缆长度为75m时,如Cf大于0?02μF,Rf小于150Ω,过电压的倍率将不超过12。

(4)滤波器的参数与端子上电压上升沿时间的关系

    同样,在电缆长度分别为30m和75m时,在不同的滤波器电阻及电容下,测取电动机端子上电压上升沿的波形,从而得到电动机端子上电压上升沿时间与滤波器电阻及电容的关系曲线,如图4所示。

    从图4中可以清楚地看出:滤波器的电阻值Rf越小,上升沿时间tr就越大,且随滤波器的电容值Cf的增大而增加,并当Cf超过0?01μF后,tr趋于饱和;当Rf大于150Ω时,上升沿时间与电容值几乎无关;另外,电缆长度L越长,上升沿时间也相应增大。这样看来,当电缆长度为75m时,如Cf大于0?01μF,Rf为100Ω,则上升沿时间超过0?9μs,它是滤波前(约045μs)的2倍。

(5)滤波器的Rf和Cf的选择

    由上述试验结果可知,滤波器电阻值Rf越小,电容值Cf越大,电缆长度L越短,则电动机端子上过电压的倍率就越小。而且Rf越小,Cf越大,上升沿时间就越大,即电压上升率(dv/dt)也就越小。如果电缆的长度约为75m,取滤波器的电容值Cf为0?02μF,Rf近似取为100Ω,则电动机端子上过电压的倍率从滤波前的1?8减小到1?2,上升沿时间从滤波前的0?45μs增大到0?9μs,则电压上升率减小到滤波前1/3,这有利于减弱过电压对电动机绝缘的破坏。


2、结语

    用RC一阶阻尼滤波器可以很好地抑制变频调速电动机端子上高频振荡的过电压,滤波器的电阻值越小,电容值越大,则过电压幅值就越小。当滤波器的电容大于一定值(如0?02μF)后,过电压幅值随滤波器电阻值的减小而减小,并在电阻值等于或小于电缆的波阻抗时趋于电源电压值,且随电缆长度的增加而略有增加,而上升沿时间随滤波器电阻值的减小而增加,并随电缆长度的增加而增加。考虑到滤波器的功耗,电容值不宜很大,应低于0.1μF。

在线咨询